Sr.

No.

Practical

Signatur
e

To implement various descriptive statistics methods
1.1) central tendency, quartile and interquartile

1.2) univariate, bivariate and multivariate.

To implement data cleaning

2.1) Removing leading or lagging spaces from a data entry 2.2) Removing
nonprintable characters from a data entry 2.3) Data cleaning: handling missing
values, type conversion, data transformations, removing duplicates. 2.4) To
detect outliers in the given data.

Regression Analysis

3.1) To perform regression analysis using single linear regression. 3.2) To
perform regression analysis using multiple linear regression. 3.3) To perform
logistic regression analysis

Classification

4.1) To implement classification using decision tree induction 4.2) To
implement classification using Naive Bayes algorithm 4.3) To implement
classification using decision tree induction with various attribute selection
methods(Information Gain, Giniindex and Gain ratio)

Clustering Algorithm
5.1) To implement clustering using K-Means Algorithm

5.2) To perform hierarchical clustering

To implement PCA (Principal Component Analysis).

To explore the given data and identify the patterns in it.

8.1) To evaluate binary classification model using confusion matrix along with
precision and recall.

8.2) To evaluate multi-class classification model using confusion matrix along
with precision and recall.

Ashish Ashtekar 411

9. Use an appropriate dataset and create a supervised learning model, Analyse
the model with ROC-AUC.

10. | Consider a case study problem and implement an appropriate model and
evaluate it.

11. Write a program to implement

11.1 Bagging and boosting model.

11.2 Cross validation methods

Ashish Ashtekar 411

Aim: To implement various descriptive statistics methods
1.1)central tendency, quartile and interquartile

import pandas as pd

import numpy as np

Ensure all columns have exactly 10 entries

Data ={
'Student_id": [101, 102, 103, 104, 105, 106, 207, 108, 109, 110],
'Age': [18, 19, 18, 20, 19, 21, 18, 20, 18, 22],
'score': [85, 59, 27, 89, 58, 87, 58, 90, 82, 89],
'Study_hours": [5,7,4,8,6,3,7,5, 6, 9]

}

df = pd.DataFrame(Data)

print("Original DataFrame:")

print(df)

print("\n")

print("Descriptive Statistics using .describe():")

print(df.describe())

print("\n")

print("Individual Statistical Measures:")

Central tendency

print(f"Mean of score: {df['score'].mean():.2f}")
print(f"Median of score: {df['score'].median():.2f}")
print(f"Mode of Age: {df['Age'].mode().tolist()}")

Quartiles

print(f"25th percentile (Q1) of score: {df['score'].quantile(0.25):.2f}")
print(f"50th percentile (Q2 / median) of score: {df['score'].quantile(0.50):.2f}")
print(f"75th percentile (Q3) of score: {df['score'].quantile(0.75):.2f}")

Interquartile Range

iqr_score = df['score'].quantile(0.75) - df['score'].quantile(0.25)
print(f"'Interquartile Range (IQR) of score: {igr_score:.2f}")

Ashish Ashtekar 411

OUTPUT:

Original DataFrame:
Student_id Age
l1el 18
l1e2 19
1e3 18
l1e4 2e
1e5 19
186 21
2e7 18
l1es8 2e
19 18
i1l1e 22

0
rt
c
a
)
=)
0
c
3
]

VNV AWNERD
VOV wWwoohbswu

Descriptive Statistics using
Student_id Age

.describe():

score Study__hours

count
mean
std
min
252
5%
75%
max

l1e.eeeeee
115.5eeeee
32.287769
101 .ee000e0e
1e3.2500ee
1e5.5ee0e0e
le8.75000e0
207 .000000

le.eeeeee
19.320000e0

1.418136
18.ee0eee
18.e22000e0
19.eeeeee
2e.ee0eee
22 . e20000e0e

1©.0e00000e0
72.400000
21.e3e137
27 .oe0eee
58.250000
83.5e00ee0
88.5e00e0e0
90 .0e0ee0

l1e.eeeeee
6 .00208ee
1.825742
3.008000
5.e0e0ee
6 .00e08e0e
7 .90e0ee
S .eeeeee

Individual Statistical Measures:

72.40
83.5©

Mean of score:
Median of score:
Mode of Age: [18]
25th percentile (Ql1) of score: 58.25
5@th percentile (Q2 / median) of score:
75th percentile (Q3) of score: 88.5@
Interquartile Range (IQR) of score:

83.586

39.25

Ashish Ashtekar 411

Aim: To implement various descriptive statistics methods

1.2) univariate, bivariate and multivariate.
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns
df=pd.read_csv("/content/Iris.csv")

#univariate

df setosa=df.loc[df['Species']=="Iris-setosa']
df_virginica=df.loc[df['Species']=="lris-virginica']

df versicolor=df.loc[df['Species']=="Iris-versicolor']
plt.plot(df_setosa['Sepal_length'],np.zeros_like(df_setosa['Sepal_length']),'o")
plt.plot(df_virginica['Sepal_length'],np.zeros_like(df_virginica['Sepal_length']),'o’)
plt.plot(df_versicolor['Sepal_length'],np.zeros_like(df versicolor['Sepal_length']),'o')
plt.xlabel("Sepal_length")

plt.show()

#bivariate
sns.FacetGrid(df hue='Species').map(plt.scatter,'Sepal_length','Sepal_width').add_legend()
plt.show()

#Multivariate
sns.pairplot(df hue="'Species',size=3)

plt.show()
OUTPUT:
.
.04
0.02
0. 00 L2 & 2 & 1 2 2 & 2 X 1 X 2 2 2 £ 2 2 2 2 2 2 X L X L X X B L X 2 - o -
—0.02
—0.045
4.5 5,.0 5.5 6:0 6-5 7,.0 7:5
Sepal_length
a5
-
-
4.0 - - -
= -
— 3.5
= target
= - -
= 3.0 - P - Iris-setosa
§ - > o - Iris-wversicolor
e 5 s :- -- - - Iris-wirginica
- -
-
2.0 c
5
sepal Ienqth {cm)

Ashish Ashtekar 411

target

Iris-setosa

Iris-versicolor
Iris-virginica

.u...... i . .a.wm
L M |
3 .Tfmv...."-.u.auu.m. . —_—

oy
y
o
:
i
-

o -num . °)
e o os o o e o ®
‘e * e 3 :
. .
. .
. g o, o
e o -oo ou‘ .
n-uuoo . @’ oe s
-ono m- ° o o
. (]
. L um "n . M S
R (U Pt
¢ ooonm-..u ¢ e of ° ¢ (T
e o 8o °
° ge
@ no®@womoan n o W o @w o~ © w T om
© ~ N © © B o\ ¥ < =] N N (w3) Ybua] e3e
(wd) y3bua| jedas (wd) yipim jedas

Ashish Ashtekar 411

Aim: To implement data cleaning
2.1) Removing leading or lagging spaces from a data entry

Create a sample DataFrame with leading/trailing spaces
data = {'TextColumn': [' hello ', 'world ', ' example']}

df = pd.DataFrame(data)

print("Original DataFrame:")

print(df)

Remove trailing spaces from the 'TextColumn'
df['TextColumn'] = df['TextColumn'].str.rstrip()

print("\nDataFrame after removing trailing spaces:")
print(df)

Remove leading spaces from the 'TextColumn'
df['TextColumn'] = df['TextColumn'].str.Istrip()

print("\nDataFrame after removing leading spaces:")
print(df)

OUTPUT:

Original DataFrame:
TextColumn

e helleo

1 world

p] example

DataFrame after removing trailing spaces:
TextColumn

e hello

1 world

p] example

DataFrame after removing leading spaces:
TextColumn
hello
world
example

Ashish Ashtekar 411

2.2) Removing nonprintable characters from a data entry

import string
Create a set of printable characters
printable = set(string.printable)

Sample data with nonprintable characters
data_with_nonprintable = "This is a string with \n a newline and \r a carriage return."

print("Original string:")
print(data_with_nonprintable)

Remove nonprintable characters using a list comprehension
cleaned_data = ".join([char for char in data_with_nonprintable if char in printable])

print("\nString after removing nonprintable characters (simpler version):")
print(cleaned_data)

OUTPUT:

Original string:
This is a string with
a carriage return.

String after removing nonprintable characters (simpler version):
This is a string with
a carriage return.

Ashish Ashtekar 411

2.3) Data cleaning: handling missing values, type conversion, data transformations, removing
duplicates.

import pandas as pd

import numpy as np

def clean_dataset(df):
print("-------------- Handling missing value--------------- ")
print("Missing values before cleaning:\n", df.isnull().sum())

1. Fill numeric missing values
for col in df.select_dtypes(include=np.number).columns:
if df[col].isnull().any():
df[col] = df[col].fillna(df[col].mean())

Fill categorical missing values
for col in df.select_dtypes(include='object').columns:
if df[col].isnull().any():
df[col] = df[col].fillna(df[col].mode()[0])

print("Missing values after filling:\n", df.isnull().sum())
2. Type conversion

if 'sone_numeric_column_string' in df.columns:
df['sone_numeric_column_string'] = pd.to_numeric(
df['sone_numeric_column_string'], errors='coerce')
df['sone_numeric_column_string'] = df['sone_numeric_column_string'].fillna(
df['sone_numeric_column_string'].mean())
print("Converted 'sone_numeric_column_string' to numeric")

if 'date_column' in df.columns:
df['date_column'] = pd.to_datetime(df['date_column'], errors='coerce')
print("Converted 'date_column' to datetime")

3. Data transformation

print("-------------- Data transformation--------------- ")

if 'column_a' in df.columns and 'column_b" in df.columns:
df['new_feature'] = df['column_a'] * df['column_b']
print("Created new feature by multiplying 'column_a' and 'column_b"")

4. Removing duplicates
initial_rows = len(df)
df.drop_duplicates(inplace=True)

print(f"Removed {initial_rows - len(df)} duplicate rows")

return df

Ashish Ashtekar 411

if _name__=='_main__"
data ={
'numerical_col_1'":[1, 2, np.nan, 4, 5],
'numerical_col_2':[10.5, 11.5, 10.8, np.nan, 12.1],
'categorical_col": ['A", 'B', 'A', 'C', np.nan],
'sone_numeric_column_string': ['100', '200', 'abc', '400', '500'],
'date_column': ['2023-01-01", '2023-01-02', 'invalid date', '2023-01-04', '2023-01-05'],
'column_a'": [1, 2, 3, 4, 5],
‘column_b'": [5, 4, 3, 2, 1],

sample_df = pd.DataFrame(data)
print("Original dataframe:\n", sample_df)

cleaned_df = clean_dataset(sample_df.copy())
print("\nCleaned Dataframe:\n", cleaned_df)

OUTPUT:

Original dataframe:
numerical_col_1 numerical_col_2 categorical_col
1e.5
11.5
1.8
NaN
12.1

mh%wp
o0 Z20 0|

sone_numeric_column_string date_column column_b
1ee 2e23-e1-e1 5
2ee 2e23-e1-e2 4
abc invalid date 3
400 2e23-e1-e4 2
5ee 2e23-e1-e5 1
Handling missing value
Missing values before cleaning:
numerical_col_1 1
numerical_col_2
categorical_col
sone_numeric_column_string
date_column
column_a
column_b
dtype: inte4
Missing values after filling:
numerical_col_1
numerical_col_2
categorical_col
sone_numeric_column_string
date_column
column_a
column_b
dtype: inte4

Type conversion

Converted 'sone_numeric_column_string"' to numeric

Converted 'date_column®' to datetime
Data transformation

Created new feature by multiplying "column_a’ "column_b"
Removing duplicates

Removed © duplicate rows

Ashish Ashtekar 411

2.4) To detect outliers in the given data.

import pandas as pd

import numpy as np
InputFileName='Movie_collection_train.csv'
print('HiHHEH)

print("Input file")
sFileName='/content/Movie_collection_train.csv'
print('Loading :',sFileName)

Movie DATA_ALL = pd.read_csv(sFileName, header=0, usecols=['Genre', '3D_available', 'Budget'],
encoding="latin-1")

Movie DATA_ALL.rename(columns={'Genre':'Movie type'},inplace=True)
print(Movie DATA_ALL)

MeanData=Movie_DATA_ALL.groupby(['Movie type','3D_available'])['Budget'].mean()
stdData=Movie_DATA_ALL.groupby(['Movie type','3D_available'])['Budget'].std()
print(MeanData);

print(stdData);

print('Outliers')

UpperBound = float(sum(MeanData) + sum(stdData))

print(‘Higher than ', UpperBound)

OutliersHigher = Movie_DATA_ALL[Movie_DATA_ALL.Budget > UpperBound]
print(OQutliersHigher)

LowerBound = float(sum(MeanData) - sum(stdData))

print(‘Lower than ', LowerBound)

OutliersLower = Movie_DATA_ALL[Movie_DATA_ALL.Budget < LowerBound]
print(OutliersLower)

print(‘Not Outliers')

OutliersNot = Movie_DATA_ALL[(Movie_DATA_ALL.Budget > LowerBound) &
(Movie_DATA ALL.Budget <= UpperBound)]

print(OutliersNot)

Ashish Ashtekar 411

OUTPUT:

HEFHBFHFFHFFHFIFEFIFEHEEEESE
Input File
Loading : J/Jcontent/Mowvie_collection_train.cswv
Budget Mowvie type 3D_awvailable
36524 _125 Thriller wWES
35668 .655 Dr-ama
39912 . .675 Comedy
38873 .890 Dr-ama
397l .585 Dr-ama
35946 . 405 Action
3IS5579 775 Thriller
319249 .585% Comedy
Sez291 .41S5S Dr-ama
32587 .860 Thriller

[49e rows x 3 columns]

Mowvie TtType 3D_awvailable

Action NO 34997 . 978750
wWES 6832 ._.983000

Comedy NO 34607 . 650000
YES 32525 . 761549

Dr-ama NO 335443 . 05588
YES 260953 .486489

Thriller NO 24861 . 7049453
YES 35952 .. 279253

Name : Budget, dtype: floate4a

Mowvie Type 3D_awvailable

Action NO 2932 .597166
wWES 4ee9 . 371358

Comedy NO 3503 . 724780
YES 3586 . 24744949

Dr-ama NO 45499 235882
wWES 2655 .962513

Thriller NO 998 .570826
YES 47549 690793

Name : Budget, dtype: floate4

Outliers

Higher tTthan 31265 .0909484526649

Emptwy DataFrame

Columns: [Budget, Mowvie type, 3D available]

Columns: [Budget, Mowvie type, 3D _available]
Index: []
Lower than 2449884 . 69332851632
Budget Mowvie twype 3D_available
36524 .125 Thriller Y ES
35668 .655 Drama NO
39912 .675 Comedy NO
38873 .89 Drama
39791 .585 Dr-ama NO
395 35946 .45 Action NO
396 35579 _TFTF75S Thriller
397 31924 _ 585 Comedy NO
398 ez291 ..415 Dr-ama NO
399 32507 . 860 Thriller NO

[49©® rows x 3 columns]

Not Outliers

Empty DataFrame

Columns: [Budget, Mowvie type, 3D _available]
Index: []

Ashish Ashtekar 411

Aim: 3.1) To perform regression analysis using single linear regression.
y = data_set.iloc[:, 1].values

import matplotlib.pyplot as mtp

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn. linear_model import LinearRegression

from sklearn.metrics import r2_score

Load dataset

data_set = pd.read_csv("/content/Salary_Data - Salary_Data.csv")

Independent variable (experience) and dependent variable (salary)
x = data_set.iloc[:, :- 1].values

y = data_set.iloc[:, 1].values

Split into training and test sets

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=1/3,
random_state=0)

Train the model

regressor = LinearRegression()

regressor. fit(x_train, y_train)

y_pred_train = regressor.predict(x_train)

mtp.scatter(x_train, y_train, color="green", label="Actual Salary (Training)")
mtp.plot(x_train, y_pred_train, color="red", label="Regression Line")
mtp.title("Salary vs Experience (Training Dataset)")
mtp.xlabel("Years of Experience")

mtp.ylabel("Salary (In Rupees)")

mtp.legend()

mtp.show()

Predict test data

y_pred_test = regressor.predict(x_test)

Find accuracy (R2 score)

accuracy = r2_score(y_test, y_pred_test)

print(f"Test Data Accuracy (R2 Score): {accuracy:.2f}")

Plot actual vs predicted for test set

mtp.scatter(x_test, y_test, color="blue", label="Actual Salary")
mtp.scatter(x_test, y_pred_test, color="red", label="Predicted Salary")
mtp.plot(x_train, regressor.predict(x_train), color="green",
label="Regression Line")

mtp.title("Salary vs Experience (Test Dataset)")

mtp.xlabel("Years of Experience")

mtp.ylabel("Salary (In Rupees)")

mtp.legend()

mtp.show()

Ashish Ashtekar 411

OUTPUT:

Salary vs Experience (Training Dataset)

® Actual Salary (Training)
120000 1 —— Regression Line
100000 +
i
(1}
[}
(=N
=
a
£ 80000 -
=
10}
©
v
60000 A
40000 H

2 4 6 8 10
Years of Experience

Test Data Accuracy (R2 Score): .97

Salary vs Experience (Test Dataset)

® Actual Salary
120000 A ® Predicted Salary
——— Regression Line []
100000 +
w
(7]
(7
o
=
=
é 80000 A
fnd
[~
©
w
60000 A
40000 -

T T T

2 - 6 8 10
Years of Experience

Ashish Ashtekar 411

Aim:3.2) To perform regression analysis using multiple linear regression.

Ashish Ashtekar 411

Aim:3.3) To perform logistic regression analysis

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn. linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
Step 1: Create a dataset (Heart Disease like) as DataFrame
np.random.seed(42)

n_samples = 500

data = pd.DataFrame({

"Age": np.random.randint(29,77, n_samples),

"Sex": np. random.randint(0,2, n_samples), # 0 = female, 1 = male
"Cholesterol": np.random.randint(150, 300, n_samples),
"BloodPressure": np.random.randint(90, 180, n_samples),
"MaxHeartRate": np.random.randint(90,200, n_samples)

b

Target variable (rule-based: high Cholesterol, high BP, or low MaxHR + higher risk)
data["HeartDisease"] =((data["Cholesterol"] > 240) |
(data["BloodPressure"] > 140) |

(data["MaxHeartRate"] < 120)).astype(int)

print("Sample of Heart Disease Dataset: \n")

print(data.head())

Step 2: Split features & target

X = data. drop("HeartDisease",axis=1)

y = data["HeartDisease"]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
Step 3: Train Logistic Regression

model = LogisticRegression(max_iter=500)

model.fit(X_train, y_train)

Step 4: Predictions & Evaluation

y_pred = model.predict(X_test)

print("\n Model Evaluation:")

print("Accuracy:", accuracy_score(y_test, y_pred))

print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("\nClassification Report:\n", classification_report(y_test,y_pred))
OUTPUT:

Ashish Ashtekar 411

Sample of Heart Disease Dataset:

Age Cholesterol BloodPressure MaxHeartRate HeartDisease
57 298 i1s 1e4
57 219 i1is 186
a3 is5e 136 188
71 282 i N i1s
=11 161 99 o7

Model Evaluation:
Accuracy: 8.8533333333333334

Confusion Matrix:
[[37 211]
[11 211]

Classification Report:
precision recall Ffi1-score support

(=] e.77 e.77 e.77 a8
B .89 e.89 -89 102

-85 ise
-83 ise
-85 ise

accuracy
macro avg
weighted avg

(=]
=]
=]
=]

-83
-85

(=] e.83
(=] e.85

4.1) To implement classification using decision tree induction

import pandas as pd
import sys
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import pandas as pd
data = {'Age": [30, 45, 25, 35, 40, 50, 28, 32, 48, 55],
'Experience': [5, 15, 2, 10, 12, 20, 4, 7, 18, 25],
'Rank': (7,9, 3,8, 7,10, 5, 6,9, 10],
'Nationality': ['UK', 'USA', 'N', 'UK'", 'USA', 'UK', 'N', 'USA', 'UK', 'N'],
'Go': ['YES', 'NO', 'YES', 'YES', 'NO', 'YES', 'NO', 'YES', 'NO', 'YES']}

df = pd.DataFrame(data)
df.to_csv('/content/dataset.csv', index=False)
d={'Uk':0,'USA":1,'N":2}
df['Nationality']=df['Nationality'].map(d)
d={"YES":1,'NO":0}

df['Go']=df['Go'].map(d)
fea=['Age','Experience’,'Rank’,'Nationality']
x=df[fea]

y=df['Go']

dtree=DecisionTreeClassifier()
dtree=dtree.fit(x,y)
tree.plot_tree(dtree,feature_names=fea)
plt.savefig("result.png")

plt.show()
print(dtree.predict([[40,10,7,1]]))
print("[1] means 'go"")

print("[0] means 'no"")

OUTPUT:

Ashish Ashtekar 411

Age == 37.5
gini = 0.48
samples = 10
value = [4, 6]
True =~ ~\ False
Age == 29.0 Age == 49.0
gini = 0.32 gini = 0.48
samples = 5 samples = 5
value = [1, 4] value = [3, 2]
"4 \ / \
Ra?nki z_o ;'0 gini = 0.0 gini = 0.0 gini = 0.0
sagmples _— > samples = 3 samples = 3 samples = 2
value = [1. 11 value = [0, 3] | value = [3, 0] | value = [0, 2]
gini = 0.0 gini = 0.0
samples = 1 samples = 1
value = [0, 1] | value = [1, O]

[e]
[1] means "go-*
(=] means "no’

4.2) To implement classification using Naive Bayes algorithm
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
Load the dataset
data = pd.read_csv('/content/loan.csv')
View the first few rows
print(data.head())
Drop rows with missing values (you can also choose to impute)
data.dropna(inplace=True)
Encode categorical variables directly in original DataFrame to avoid SettingWithCopyWarning
le = LabelEncoder()
for col in ['Gender’, 'Married', 'Education’, 'Self_Employed']:
data.loc[:, col] = le.fit_transform(data[col])
Encode target variable
data['Loan_Status'] = le. fit_transform(data['Loan_Status'])
Select features and target after

X = data[['Gender', 'Married', 'Education’, 'Self _Employed', 'Applicantincome’, 'LoanAmount']]

Ashish Ashtekar 411

y = data['Loan_Status']

Split into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
Initialize and train Naive Bayes model

model = GaussianNB()

model.fit(X_train, y_train)

#Predict on test set

y_pred = model.predict(X_test)

#Evaluate the model

print("Accuracy:", accuracy_score(y_test, y_pred))

print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))
Create a sample DataFrame with the correct feature names and order
sample = pd.DataFrame ({

'Gender': [1], # Male encoded as 1

'Married': [1], # Yes encoded as 1

'Education': [1], # Graduate encoded as 1

'Self_Employed': [0], # No encoded as 0

'Applicantincome': [5000],

'LoanAmount': [128]

1

Predict the class for the unknown sample or evidence
predicted_class = model.predict(sample)

Map prediction back to label

loan_status_map = {0: 'N', 1:'Y'}

print(f"Predicted Loan Status: {loan_status_map[predicted_class[0]]}")

OUTPUT:

Ashish Ashtekar 411

Loan_ID Gender u Dependents Education Self Employed
LPeel1leo2 Male Graduate
LPo21oe3 Male Graduate
LPEel1ees Male Graduate
LPEel1ees Male Graduate
LPOS1OGS8 Male Graduate

ApplicantIncome CoapplicantIncome LoanAmount
5849 (== NaMN
4583 i1ses.e izs._.e
20e e.a 56 .2
2583 2358 . 1ze .o
(=4=1=1=] 14131 .2

Property__Area
Urban
Rural
Urban
Urban
Urban

Classification Report:
precision ecall fFl1l-score

L= 2 .43 2.7 2.12
u B e.s81

accuracy 2 .69
macro awvg
weighted awvg

Predicte Loan Status: Y

Aim:4.3) To implement classification using decision tree induction with various attribute selection
methods(Information Gain, Gini index and Gain ratio)

Ashish Ashtekar 411

Aim: 5.1To implement clustering using K-Means Algorithm

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

from sklearn.preprocessing import StandardScaler

Step 1: Synthetic cluster-friendly dataset
data ={

'Age': [22, 23, 25, 24, 26, # Group 1: Young, low salary, short browsing
35, 36, 34, 33,37, # Group 2: Mid-age, mid salary, medium browsing
48,50,52,49,51, # Group 3: Older, high salary, long browsing
23, 36, 50, 35, 48], # Mix for variation

'Salary': [25000, 27000, 26000, 28000, 24000,

60000, 62000, 58000, 61000, 59000,
100000, 98000, 105000, 97000, 102000,
25500, 60500, 101000, 61500, 990001,

'‘Browsing_Time': [1.5, 1.8, 2.0, 1.6, 1.9,

5.0,5.2,4.8,55,5.1,
9.0, 8.5,9.2,8.8,9.5,
2.0, 5.3, 9.0, 5.0, 8.7]

df = pd.DataFrame(data)

Ashish Ashtekar 411

Step 2: Scale features
scaler = StandardScaler()
scaled = scaler.fit_transform(df)

Step 3: KMeans clustering
kmeans = KMeans(n_clusters=3, random_state=42)
df['Cluster'] = kmeans.fit_predict(scaled)

Step 4: Plot clusters (Age vs Salary)
plt.figure(figsize=(8, 6))
for cluster in df['Cluster'].unique():
cluster_data = df[df['Cluster'] == cluster]
plt.scatter(cluster_data['Age'], cluster_data['Browsing_Time'], label=f'Cluster {cluster}', s=100)

plt.title('Clustered Data (Age vs Salary)')
plt.xlabel('Age')
plt.ylabel('Browsing_Time')

plt.legend()
plt.grid(True)
plt.show()
OUTPUT:
Clustered Data (Age vs Salary)
@ Cluster2 ®
94 Cluster 0 - o @
@® Clusterl ; o
L]
.
7 -
£
.':l 6 -
g
43}
a
3 -
21 i Se
o @
25 30 35 40 a5 50

Ashish Ashtekar 411

Aim: 5.2) To perform hierarchical clustering

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from scipy.cluster.hierarchy import linkage,dendrogram
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import AgglomerativeClustering

#Stepl:

data={
'Age":[22,25,47,52,48,55,60,32,44,25,

40,28,38,29,30,41,26,34,45,50],
'Salary':[25000,27000,90000,110000,95000,120000,99000,105000,115000,48000,
80000,30000,75000,32000,35000,82000,28000,60000,87000,100000],
'‘Browsing_Time":[1.5,2.0,8.5,9.0,7.5,10.0,7.0,8.0,9.5,3.5,
6.5,2.5,6.0,3.0,3.2,7.0,2.2,4.5,6.8,8.5]

}
df=pd.DataFrame(data)

#Step2

scaler=StandardScaler()
X_scaled=scaler.fit_transform(df)
H#step3

plt.figure(figsize=(10,6))

Ashish Ashtekar 411

linked=linkage(X_scaled,method="'ward')
dendrogram(linked,
orientation="top',
distance_sort='ascending’,
show_leaf counts=True)
plt.title("Dendogram")
plt.xlabel("Sample")
plt.ylabel("Distance")
plt.show()

#stepd
cluster=AgglomerativeClustering(n_clusters=4,linkage='ward')
df['Cluster']=cluster.fit_predict(X_scaled)

#step5

print("Clustered Date")

print(df)
sns.scatterplot(data=df,x="'Salary',y='"Browsing_Time',hue='Cluster',palette='deep')
plt.title("Hierachical Clustering")

plt.xlabel("Salary")

plt.ylabel("Browsing time")

plt.grid(True)

plt.show()

OUTPUT:

Dendogram

Distance

L e [

0
0 1 16 9 11 13 14 7 17 12 10 15 8 5 3 19 6 18 2 4

Sample

Ashish Ashtekar 411

Clustered Date

Age
22
25
a7
52
18
55
6e
32
a4
25
a4
28
38
29
3e
41
26
34
145
5

e
1
2
3
a
5
6
7
8
= |

Salary
25000
27000
Seeeoe

lleeee
o95800

120000
998080

105000

l1l15eee
48000
80000
30000
75000
32200
35200
82000
28200
[=1=1=1-1-]
87000

1eeeee

Browsing_Time

Hierachical Clustering

1.

WOAOANNWWONDOWOONONOYON
VROUNONOOUUUVMUOOOUOEWVOWU

WNORORROFROHFWONWNUWNRER

10 1 Cluster
e 0
o 1
e 2
8' . 3
[}
£
o 6
-
]
s
e
m
4 -
]
L]
2]
[]

L]

Practical 6: To implement PCA (Principal Component Analysis).

40000

import pandas as pd

import numpy as np

60000

import matplotlib.pyplot as plt

80000
Salary

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_breast_cancer

data=load_breast_cancer()

data.keys()

Ashish Ashtekar 411

100000

120000

print(data['target_names']) #check the output class
print(data['feature_names']) #check the input features
dfl=pd.DataFrame(data['data'],columns=data['feature_names'])
scaling=StandardScaler()

scaling.fit(df1)

scaled_data=scaling.transform(df1)
principal=PCA(n_components=3) #set n_componets=3
principal.fit(scaled_data)
x=principal.transform(scaled_data)

print(x.shape)

plt.figure(figsize=(10,10))
plt.scatter(x[:,0],x[:,1],c=data['target'],cmap="plasma’)
plt.xlabel('pc1')

plt.ylabel('pc2')

plt.show()

from mpl_toolkits.mplot3d import Axes3D
fig=plt.figure(figsize=(10,10))
axis=fig.add_subplot(111,projection='3d")

axis.scatter(x[:,0],x[:,1],x[:,2],c=data['target'],cmap="'plasma')

axis.set_xlabel('pcl1',fontsize=10)
axis.set_ylabel('pc2',fontsize=10)
axis.set_zlabel('pc3',fontsize=10)
plt.show()

OUTPUT:

Ashish Ashtekar 411

3¥ ['malignant’ ‘benign’]
['mean radius"®
‘mean smoothness'

‘mean concave points’

‘mean texture'

‘mean symmetry’

‘mean perimeter’
'mean compactness’

‘mean area’
‘mean concavity’
"mean fractal dimension’

‘radius error’

"texture error’

‘perimeter error’

"area error’

‘emoothness error’

'concave points error’

‘worst radius’

'worst smoothness’

‘worst concave points’
(569, 2)

‘worst texture'’

‘compactness error’

‘symmetry error’

"worst symmetry’

10.0 -

p2

oo

15

‘worst perimeter’
"worst compactness’

‘concavity error’

"fractal dimension error’
‘worst area’
'worst concavity’

‘worst fractal dimension']

Practical 7 :To explore the given data and identify the patterns in it.

Ashish Ashtekar 411

Aim: 8.1) To evaluate binary classification model using confusion matrix along with precision and
recall.

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import confusion_matrix

Ashish Ashtekar 411

import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score
#load dataset
X,y=load_breast_cancer(return_X_y=True)
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)
#Train model
tree=DecisionTreeClassifier(random_state=23)
tree.fit(X_train,y_train)
y_pred=tree.predict(X_test)
#compute the matrix
cm=confusion_matrix(y_test,y pred)
#plot the matrix
sns.heatmap(cm,
annot=True,
fmt='g',
xticklabels=['maligant’,'benign'],
yticklabels=['maligant’,'benign'])
plt.ylabel("prediction")
plt.xlabel("actual")
plt.title("confusion matrix")
plt.show()
#finding presion and recall
accuracy=accuracy_score(y_test,y pred)
print("accuracy:",accuracy)
precision=precision_score(y_test,y pred)
print("presion:",precision)
recall=recall_score(y_test,y_pred)
print("recall:",recall)
f=f1_score(y_test,y_test)
print("f1:",f)
OUTPUT:

confusion matrix

maligant

prediction

Aim:8.2) To evaluate multi-class classification model using confusion matrix along with
precision and recall.

Ashish Ashtekar 411

Aim:9(Use an appropriate dataset and create a supervised learning model, Analyse the model with
ROC-AUC.

#Use an appropriate dataset and create a supervised learning model, Analyse the model with
ROC-AUC.

import pandas as pd

import seaborn as sns

Ashish Ashtekar 411

import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import (
confusion_matrix, accuracy_score, precision_score,
recall_score, f1_score, roc_curve, auc)
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.25, random_state=23, stratify=y
)
treel = DecisionTreeClassifier(random_state=23)
treel.fit(X_train, y_train)
y_pred1l = treel.predict(X_test)
y_probal = treel.predict_proba(X_test)[:, 1]
print("=== Breast Cancer Dataset ===")
print("Accuracy :", accuracy_score(y_test, y pred1))
print("Precision:", precision_score(y_test, y_pred1))

print("Recall :", recall_score(y_test, y_predl))

print("F1-score :", f1_score(y_test, y_pred1))

cm1 = confusion_matrix(y_test, y_pred1)

sns.heatmap(cm1, annot=True, fmt="g",
xticklabels=["malignant", "benign"],
yticklabels=["malignant", "benign"])

plt.title("Confusion Matrix - Breast Cancer Dataset")

plt.show()

fprl, tprl, =roc_curve(y_test, y_probal)

roc_aucl = auc(fprl, tprl)

data = pd.DataFrame({

Ashish Ashtekar 411

"education":
["bach","mast","diploma","mast","diploma","bach","mast","mast","diploma","mast","bach","mast",

"mast","mast","bach"],
"job": [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0]

)

Encode categorical features
X2 = pd.get_dummies(data.drop("job", axis=1))

y2 = data["job"]

X2_train, X2_test, y2_train, y2_test = train_test_split(

X2, y2, test_size=0.25, random_state=23, stratify=y2

tree2 = DecisionTreeClassifier(random_state=23)

tree2.fit(X2_train, y2_train)

y2_pred = tree2.predict(X2_test)

y2_proba = tree2.predict_proba(X2_test)[:, 1]

print("\n=== Unbalanced CSV Dataset ===")
print("Accuracy :", accuracy_score(y2_test, y2_pred))
print("Precision:", precision_score(y2_test, y2_pred))
print("Recall :", recall_score(y2_test, y2_pred))

print("F1-score :", f1_score(y2_test, y2_pred))

cm2 = confusion_matrix(y2_test, y2_pred)
sns.heatmap(cm2, annot=True, fmt="g")
plt.title("Confusion Matrix - Unbalanced CSV Dataset")

plt.show()

fpr2, tpr2, =roc_curve(y2_test, y2_proba)

Ashish Ashtekar 411

roc_auc2 = auc(fpr2, tpr2)

plt.figure(figsize=(7, 5))
plt.plot(fpril, tprl, label=f"Breast Cancer (AUC={roc_aucl:.2f})")

plt.plot(fpr2, tpr2, label=f"Unbalanced CSV (AUC={roc_auc2:.2f})")

plt.plot([0, 1], [0, 1], "r--", label="Random Guess")
plt.xlabel("False Positive Rate")

plt.ylabel("True Positive Rate")

plt.title("ROC Curves Comparison")

plt.legend()

plt.grid(True)

plt.show()

OUTPUT:

=== Breast Cancer Dataset ===
Accuracy : ©.9238769238769231

Precision: ©.9340659348659341
Recall 1 8.9444444444444444
Fl-score : ©.9392265193370166

Confusion Matrix - Breast Cancer Dataset

- 80

-70

malignant

benign

20

10

malignant

Ashish Ashtekar 411

=== Unbalanced CSV Dataset ===
Accuracy : .75
Precision: ©.9©

Recall : 8.0

Fl-score : ©.0©

/usr/local/lib/python3.12/dist-packages/sklearn/metrics/_classifica
_warn_prf(average, modifier, f"{metric.capitalize()} is"™, len(reg

Confusion Matrix - Unbalanced CSV Dataset o

-2.5

0.0

ROC Curves Comparison

1.0
0.8
3
& 0.6 1
]
2
E
o
o
v 0.4
=
'_
0.2
/’ — Breast Cancer (AUC=0.92)
L7 Unbalanced CSV (AUC=0.33)
004 K- -=-- Random Guess
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Ashish Ashtekar 411

Practical 10.:Consider a case study problem and implement an appropriate model and
evaluate it.

Ashish Ashtekar 411

Aim: 11.1)Bagging and boosting model.

#bagging and boosting

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier
from sklearn.metrics import classification_report

import pandas as pd

data = pd.read_csv("/content/breast-cancer.csv")

x=data.drop("diagnosis", axis=1)

y=data.diagnosis

df=pd.DataFrame(y)

print(df.head())

#splitting data

X_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=42)
#initialize model

rf=RandomForestClassifier(n_estimators=100,random_state=42)
gb=GradientBoostingClassifier(n_estimators=100,learning_rate=0.3,random_state=42)
#train model

rf.fit(x_train,y_train)

gb.fit(x_train,y_train)

#predict model

y_pred_rf=rf.predict(x_test)

y_pred_gb=gb.predict(x_test)

#Evaluate and print result

print("\nRandom forest (bagging) classification report: ")
print(classification_report(y_test,y pred_rf))

print("\nGradient boosting (boosting) classification report: ")

print(classification_report(y_test,y_pred_gb))

Ashish Ashtekar 411

OUTPUT:

diagnosis

Random forest (bagging) classification report:
precision recall fl-score support

B ©.96 ©.99 e.97 71
M ©.98 ©.93 ©.95 43

accuracy 0.96
macro avg 0.96
weighted avg .96

Gradient boosting (boosting) classification report:
precision recall fl-score support

B ©.96 9.96 e.96 71
M ©.93 ©.93 ©.93 43

accuracy ©.95
macro avg 0.94
weighted avg .95

Ashish Ashtekar 411

Aim:11.2 Cross validation methods

from sklearn.datasets import load_breast_cancer

from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier
from sklearn.model_selection import cross_val_score, StratifiedKFold

import numpy as np

data = load_breast_cancer()

X = data.data

y = data.target

kf = StratifiedKFold(n_splits=10)

rf = RandomForestClassifier(n_estimators=100, n_jobs=42)

gb = GradientBoostingClassifier(n_estimators=100,learning_rate=0.1,random_state=42)
rf_scores = cross_val_score(rf,X,y,cv=kf,scoring='f1")

gb_scores = cross_val_score(gb,X,y,cv=kf,scoring="'f1")

print(f"Random forest (Bagging) 10-fold cv f1-score:"
f"Mean={rf_scores.mean():.4f}:,Std={rf_scores.std():.4f}")

print(f"Gradient boosting (Boosting) 10-fold cv f1-score:"
f"Mean={gb_scores.mean():.4f}:,Std={gb_scores.std():.4f}")

OUTPUT:

Random forest (Bagging) 16-fold cv f1-score:Mean=@.9724: Std=6,8192

Gradient boosting (Boosting) 10-fold cv f1-score:Mean=0.9694: Std=.0235

Ashish Ashtekar 411

