

Sr.

No.

Practical Signatur

e

1 To implement various descriptive statistics methods

1.1) central tendency, quartile and interquartile

1.2) univariate, bivariate and multivariate.

2 To implement data cleaning

2.1) Removing leading or lagging spaces from a data entry 2.2) Removing

nonprintable characters from a data entry 2.3) Data cleaning: handling missing

values, type conversion, data transformations, removing duplicates. 2.4) To

detect outliers in the given data.

3 Regression Analysis

3.1) To perform regression analysis using single linear regression. 3.2) To

perform regression analysis using multiple linear regression. 3.3) To perform

logistic regression analysis

4 Classification

4.1) To implement classification using decision tree induction 4.2) To

implement classification using Naïve Bayes algorithm 4.3) To implement

classification using decision tree induction with various attribute selection

methods(Information Gain, Gini index and Gain ratio)

5 Clustering Algorithm

5.1) To implement clustering using K-Means Algorithm

5.2) To perform hierarchical clustering

6 To implement PCA (Principal Component Analysis).

7 To explore the given data and identify the patterns in it.

8 8.1) To evaluate binary classification model using confusion matrix along with

precision and recall.

8.2) To evaluate multi-class classification model using confusion matrix along

with precision and recall.

Ashish Ashtekar 411

9. Use an appropriate dataset and create a supervised learning model, Analyse

the model with ROC-AUC.

10. Consider a case study problem and implement an appropriate model and

evaluate it.

11. Write a program to implement

11.1 Bagging and boosting model.

11.2 Cross validation methods

Ashish Ashtekar 411

Aim: To implement various descriptive statistics methods

1.1)central tendency, quartile and interquartile

import pandas as pd

import numpy as np

Ensure all columns have exactly 10 entries

Data = {

 'Student_id': [101, 102, 103, 104, 105, 106, 207, 108, 109, 110],

 'Age': [18, 19, 18, 20, 19, 21, 18, 20, 18, 22],

 'score': [85, 59, 27, 89, 58, 87, 58, 90, 82, 89],

 'Study_hours': [5, 7, 4, 8, 6, 3, 7, 5, 6, 9]

}

df = pd.DataFrame(Data)

print("Original DataFrame:")

print(df)

print("\n")

print("Descriptive Statistics using .describe():")

print(df.describe())

print("\n")

print("Individual Statistical Measures:")

Central tendency

print(f"Mean of score: {df['score'].mean():.2f}")

print(f"Median of score: {df['score'].median():.2f}")

print(f"Mode of Age: {df['Age'].mode().tolist()}")

Quartiles

print(f"25th percentile (Q1) of score: {df['score'].quantile(0.25):.2f}")

print(f"50th percentile (Q2 / median) of score: {df['score'].quantile(0.50):.2f}")

print(f"75th percentile (Q3) of score: {df['score'].quantile(0.75):.2f}")

Interquartile Range

iqr_score = df['score'].quantile(0.75) - df['score'].quantile(0.25)

print(f"Interquartile Range (IQR) of score: {iqr_score:.2f}")

Ashish Ashtekar 411

OUTPUT:

Ashish Ashtekar 411

Aim: To implement various descriptive statistics methods

1.2) univariate, bivariate and multivariate.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

df=pd.read_csv("/content/Iris.csv")

#univariate

df_setosa=df.loc[df['Species']=='Iris-setosa']

df_virginica=df.loc[df['Species']=='Iris-virginica']

df_versicolor=df.loc[df['Species']=='Iris-versicolor']

plt.plot(df_setosa['Sepal_length'],np.zeros_like(df_setosa['Sepal_length']),'o')

plt.plot(df_virginica['Sepal_length'],np.zeros_like(df_virginica['Sepal_length']),'o')

plt.plot(df_versicolor['Sepal_length'],np.zeros_like(df_versicolor['Sepal_length']),'o')

plt.xlabel("Sepal_length")

plt.show()

#bivariate

sns.FacetGrid(df,hue='Species').map(plt.scatter,'Sepal_length','Sepal_width').add_legend()

plt.show()

#Multivariate

sns.pairplot(df,hue='Species',size=3)

plt.show()

OUTPUT:

​

​

Ashish Ashtekar 411

​

Ashish Ashtekar 411

Aim: To implement data cleaning

2.1) Removing leading or lagging spaces from a data entry

Create a sample DataFrame with leading/trailing spaces

data = {'TextColumn': [' hello ', 'world ', ' example']}

df = pd.DataFrame(data)

print("Original DataFrame:")

print(df)

Remove trailing spaces from the 'TextColumn'

df['TextColumn'] = df['TextColumn'].str.rstrip()

print("\nDataFrame after removing trailing spaces:")

print(df)

Remove leading spaces from the 'TextColumn'

df['TextColumn'] = df['TextColumn'].str.lstrip()

print("\nDataFrame after removing leading spaces:")

print(df)

OUTPUT:

Ashish Ashtekar 411

2.2) Removing nonprintable characters from a data entry

import string

Create a set of printable characters

printable = set(string.printable)

Sample data with nonprintable characters

data_with_nonprintable = "This is a string with \n a newline and \r a carriage return."

print("Original string:")

print(data_with_nonprintable)

Remove nonprintable characters using a list comprehension

cleaned_data = ''.join([char for char in data_with_nonprintable if char in printable])

print("\nString after removing nonprintable characters (simpler version):")

print(cleaned_data)

OUTPUT:

Ashish Ashtekar 411

2.3) Data cleaning: handling missing values, type conversion, data transformations, removing

duplicates.

import pandas as pd

import numpy as np

def clean_dataset(df):

 print("--------------Handling missing value---------------")

 print("Missing values before cleaning:\n", df.isnull().sum())

 # 1. Fill numeric missing values

 for col in df.select_dtypes(include=np.number).columns:

 if df[col].isnull().any():

 df[col] = df[col].fillna(df[col].mean())

 # Fill categorical missing values

 for col in df.select_dtypes(include='object').columns:

 if df[col].isnull().any():

 df[col] = df[col].fillna(df[col].mode()[0])

 print("Missing values after filling:\n", df.isnull().sum())

 # 2. Type conversion

 print("--------------Type conversion---------------")

 if 'sone_numeric_column_string' in df.columns:

 df['sone_numeric_column_string'] = pd.to_numeric(

 df['sone_numeric_column_string'], errors='coerce')

 df['sone_numeric_column_string'] = df['sone_numeric_column_string'].fillna(

 df['sone_numeric_column_string'].mean())

 print("Converted 'sone_numeric_column_string' to numeric")

 if 'date_column' in df.columns:

 df['date_column'] = pd.to_datetime(df['date_column'], errors='coerce')

 print("Converted 'date_column' to datetime")

 # 3. Data transformation

 print("--------------Data transformation---------------")

 if 'column_a' in df.columns and 'column_b' in df.columns:

 df['new_feature'] = df['column_a'] * df['column_b']

 print("Created new feature by multiplying 'column_a' and 'column_b'")

 # 4. Removing duplicates

 print("--------------Removing duplicates---------------")

 initial_rows = len(df)

 df.drop_duplicates(inplace=True)

 print(f"Removed {initial_rows - len(df)} duplicate rows")

 return df

Ashish Ashtekar 411

if __name__ == '__main__':

 data = {

 'numerical_col_1': [1, 2, np.nan, 4, 5],

 'numerical_col_2': [10.5, 11.5, 10.8, np.nan, 12.1],

 'categorical_col': ['A', 'B', 'A', 'C', np.nan],

 'sone_numeric_column_string': ['100', '200', 'abc', '400', '500'],

 'date_column': ['2023-01-01', '2023-01-02', 'invalid date', '2023-01-04', '2023-01-05'],

 'column_a': [1, 2, 3, 4, 5],

 'column_b': [5, 4, 3, 2, 1],

 }

 sample_df = pd.DataFrame(data)

 print("Original dataframe:\n", sample_df)

 cleaned_df = clean_dataset(sample_df.copy())

 print("\nCleaned Dataframe:\n", cleaned_df)

OUTPUT:

Ashish Ashtekar 411

2.4) To detect outliers in the given data.

import pandas as pd

import numpy as np

InputFileName='Movie_collection_train.csv'

print('###################')

print("Input file")

sFileName='/content/Movie_collection_train.csv'

print('Loading :',sFileName)

Movie_DATA_ALL = pd.read_csv(sFileName, header=0, usecols=['Genre', '3D_available', 'Budget'],

encoding='latin-1')

Movie_DATA_ALL.rename(columns={'Genre':'Movie type'},inplace=True)

print(Movie_DATA_ALL)

MeanData=Movie_DATA_ALL.groupby(['Movie type','3D_available'])['Budget'].mean()

stdData=Movie_DATA_ALL.groupby(['Movie type','3D_available'])['Budget'].std()

print(MeanData);

print(stdData);

print('Outliers')

UpperBound = float(sum(MeanData) + sum(stdData))

print('Higher than ', UpperBound)

OutliersHigher = Movie_DATA_ALL[Movie_DATA_ALL.Budget > UpperBound]

print(OutliersHigher)

LowerBound = float(sum(MeanData) - sum(stdData))

print('Lower than ', LowerBound)

OutliersLower = Movie_DATA_ALL[Movie_DATA_ALL.Budget < LowerBound]

print(OutliersLower)

print('Not Outliers')

OutliersNot = Movie_DATA_ALL[(Movie_DATA_ALL.Budget > LowerBound) &

(Movie_DATA_ALL.Budget <= UpperBound)]

print(OutliersNot)

Ashish Ashtekar 411

OUTPUT:

Ashish Ashtekar 411

Aim: 3.1) To perform regression analysis using single linear regression.

y = data_set.iloc[:, 1].values

import matplotlib.pyplot as mtp

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn. linear_model import LinearRegression

from sklearn.metrics import r2_score

Load dataset

data_set = pd.read_csv("/content/Salary_Data - Salary_Data.csv")

Independent variable (experience) and dependent variable (salary)

x = data_set.iloc[:, :- 1].values

y = data_set.iloc[:, 1].values

Split into training and test sets

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=1/3,

random_state=0)

Train the model

regressor = LinearRegression()

regressor. fit(x_train, y_train)

y_pred_train = regressor.predict(x_train)

mtp.scatter(x_train, y_train, color="green", label="Actual Salary (Training)")

mtp.plot(x_train, y_pred_train, color="red", label="Regression Line")

mtp.title("Salary vs Experience (Training Dataset)")

mtp.xlabel("Years of Experience")

mtp.ylabel("Salary (In Rupees)")

mtp.legend()

mtp.show()

Predict test data

y_pred_test = regressor.predict(x_test)

Find accuracy (R2 score)

accuracy = r2_score(y_test, y_pred_test)

print(f"Test Data Accuracy (R2 Score): {accuracy:.2f}")

Plot actual vs predicted for test set

mtp.scatter(x_test, y_test, color="blue", label="Actual Salary")

mtp.scatter(x_test, y_pred_test, color="red", label="Predicted Salary")

mtp.plot(x_train, regressor.predict(x_train), color="green",

label="Regression Line")

mtp.title("Salary vs Experience (Test Dataset)")

mtp.xlabel("Years of Experience")

mtp.ylabel("Salary (In Rupees)")

mtp.legend()

mtp.show()

Ashish Ashtekar 411

OUTPUT:

Ashish Ashtekar 411

Aim:3.2) To perform regression analysis using multiple linear regression.

Ashish Ashtekar 411

Aim:3.3) To perform logistic regression analysis

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn. linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

Step 1: Create a dataset (Heart Disease like) as DataFrame

np.random.seed(42)

n_samples = 500

data = pd.DataFrame({

"Age": np.random.randint(29,77, n_samples),

"Sex": np. random.randint(0,2, n_samples), # 0 = female, 1 = male

"Cholesterol": np.random.randint(150, 300, n_samples),

"BloodPressure": np.random.randint(90, 180, n_samples),

"MaxHeartRate": np.random.randint(90,200, n_samples)

})

Target variable (rule-based: high Cholesterol, high BP, or low MaxHR + higher risk)

data["HeartDisease"] =((data["Cholesterol"] > 240) |

 (data["BloodPressure"] > 140) |

 (data["MaxHeartRate"] < 120)).astype(int)

print("Sample of Heart Disease Dataset: \n")

print(data.head())

Step 2: Split features & target

X = data. drop("HeartDisease",axis=1)

y = data["HeartDisease"]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

Step 3: Train Logistic Regression

model = LogisticRegression(max_iter=500)

model.fit(X_train, y_train)

Step 4: Predictions & Evaluation

y_pred = model.predict(X_test)

print("\n Model Evaluation:")

print("Accuracy:", accuracy_score(y_test, y_pred))

print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred))

print("\nClassification Report:\n", classification_report(y_test,y_pred))

OUTPUT:

Ashish Ashtekar 411

4.1) To implement classification using decision tree induction

import pandas as pd

import sys

from sklearn import tree

from sklearn.tree import DecisionTreeClassifier

import matplotlib.pyplot as plt

import pandas as pd

data = {'Age': [30, 45, 25, 35, 40, 50, 28, 32, 48, 55],

 'Experience': [5, 15, 2, 10, 12, 20, 4, 7, 18, 25],

 'Rank': [7, 9, 3, 8, 7, 10, 5, 6, 9, 10],

 'Nationality': ['UK', 'USA', 'N', 'UK', 'USA', 'UK', 'N', 'USA', 'UK', 'N'],

 'Go': ['YES', 'NO', 'YES', 'YES', 'NO', 'YES', 'NO', 'YES', 'NO', 'YES']}

df = pd.DataFrame(data)

df.to_csv('/content/dataset.csv', index=False)

d={'Uk':0,'USA':1,'N':2}

df['Nationality']=df['Nationality'].map(d)

d={'YES':1,'NO':0}

df['Go']=df['Go'].map(d)

fea=['Age','Experience','Rank','Nationality']

x=df[fea]

y=df['Go']

dtree=DecisionTreeClassifier()

dtree=dtree.fit(x,y)

tree.plot_tree(dtree,feature_names=fea)

plt.savefig("result.png")

plt.show()

print(dtree.predict([[40,10,7,1]]))

print("[1] means 'go'")

print("[0] means 'no'")

OUTPUT:

Ashish Ashtekar 411

4.2) To implement classification using Naïve Bayes algorithm

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

Load the dataset

data = pd.read_csv('/content/loan.csv')

View the first few rows

print(data.head())

Drop rows with missing values (you can also choose to impute)

data.dropna(inplace=True)

Encode categorical variables directly in original DataFrame to avoid SettingWithCopyWarning

le = LabelEncoder()

for col in ['Gender', 'Married', 'Education', 'Self_Employed']:

 data.loc[:, col] = le.fit_transform(data[col])

Encode target variable

data['Loan_Status'] = le. fit_transform(data['Loan_Status'])

Select features and target after

X = data[['Gender', 'Married', 'Education', 'Self_Employed', 'ApplicantIncome', 'LoanAmount']]

Ashish Ashtekar 411

y = data['Loan_Status']

Split into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

Initialize and train Naive Bayes model

model = GaussianNB()

model.fit(X_train, y_train)

#Predict on test set

y_pred = model.predict(X_test)

#Evaluate the model

print("Accuracy:", accuracy_score(y_test, y_pred))

print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))

print("Classification Report:\n", classification_report(y_test, y_pred))

Create a sample DataFrame with the correct feature names and order

sample = pd.DataFrame ({

'Gender': [1], # Male encoded as 1

'Married': [1], # Yes encoded as 1

'Education': [1], # Graduate encoded as 1

'Self_Employed': [0], # No encoded as 0

'ApplicantIncome': [5000],

'LoanAmount': [128]

})

Predict the class for the unknown sample or evidence

predicted_class = model.predict(sample)

Map prediction back to label

loan_status_map = {0: 'N', 1: 'Y'}

print(f"Predicted Loan Status: {loan_status_map[predicted_class[0]]}")

OUTPUT:

Ashish Ashtekar 411

Aim:4.3) To implement classification using decision tree induction with various attribute selection

methods(Information Gain, Gini index and Gain ratio)

Ashish Ashtekar 411

Aim: 5.1To implement clustering using K-Means Algorithm

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

from sklearn.preprocessing import StandardScaler

Step 1: Synthetic cluster-friendly dataset

data = {

 'Age': [22, 23, 25, 24, 26, # Group 1: Young, low salary, short browsing

 35, 36, 34, 33, 37, # Group 2: Mid-age, mid salary, medium browsing

 48, 50, 52, 49, 51, # Group 3: Older, high salary, long browsing

 23, 36, 50, 35, 48], # Mix for variation

 'Salary': [25000, 27000, 26000, 28000, 24000,

 60000, 62000, 58000, 61000, 59000,

 100000, 98000, 105000, 97000, 102000,

 25500, 60500, 101000, 61500, 99000],

 'Browsing_Time': [1.5, 1.8, 2.0, 1.6, 1.9,

 5.0, 5.2, 4.8, 5.5, 5.1,

 9.0, 8.5, 9.2, 8.8, 9.5,

 2.0, 5.3, 9.0, 5.0, 8.7]

}

df = pd.DataFrame(data)

Ashish Ashtekar 411

Step 2: Scale features

scaler = StandardScaler()

scaled = scaler.fit_transform(df)

Step 3: KMeans clustering

kmeans = KMeans(n_clusters=3, random_state=42)

df['Cluster'] = kmeans.fit_predict(scaled)

Step 4: Plot clusters (Age vs Salary)

plt.figure(figsize=(8, 6))

for cluster in df['Cluster'].unique():

 cluster_data = df[df['Cluster'] == cluster]

 plt.scatter(cluster_data['Age'], cluster_data['Browsing_Time'], label=f'Cluster {cluster}', s=100)

plt.title('Clustered Data (Age vs Salary)')

plt.xlabel('Age')

plt.ylabel('Browsing_Time')

plt.legend()

plt.grid(True)

plt.show()

OUTPUT:

Ashish Ashtekar 411

Aim: 5.2) To perform hierarchical clustering

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from scipy.cluster.hierarchy import linkage,dendrogram

from sklearn.preprocessing import StandardScaler

from sklearn.cluster import AgglomerativeClustering

#Step1:

data={

 'Age':[22,25,47,52,48,55,60,32,44,25,

 40,28,38,29,30,41,26,34,45,50],

 'Salary':[25000,27000,90000,110000,95000,120000,99000,105000,115000,48000,

 80000,30000,75000,32000,35000,82000,28000,60000,87000,100000],

 'Browsing_Time':[1.5,2.0,8.5,9.0,7.5,10.0,7.0,8.0 ,9.5,3.5,

 6.5,2.5,6.0,3.0,3.2,7.0,2.2,4.5,6.8,8.5]

}

df=pd.DataFrame(data)

#Step2

scaler=StandardScaler()

X_scaled=scaler.fit_transform(df)

#step3

plt.figure(figsize=(10,6))

Ashish Ashtekar 411

linked=linkage(X_scaled,method='ward')

dendrogram(linked,

 orientation='top',

 distance_sort='ascending',

 show_leaf_counts=True)

plt.title("Dendogram")

plt.xlabel("Sample")

plt.ylabel("Distance")

plt.show()

#step4

cluster=AgglomerativeClustering(n_clusters=4,linkage='ward')

df['Cluster']=cluster.fit_predict(X_scaled)

#step5

print("Clustered Date")

print(df)

sns.scatterplot(data=df,x='Salary',y='Browsing_Time',hue='Cluster',palette='deep')

plt.title("Hierachical Clustering")

plt.xlabel("Salary")

plt.ylabel("Browsing time")

plt.grid(True)

plt.show()

OUTPUT:

Ashish Ashtekar 411

Practical 6: To implement PCA (Principal Component Analysis).

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

from sklearn.datasets import load_breast_cancer

data=load_breast_cancer()

data.keys()

Ashish Ashtekar 411

print(data['target_names']) #check the output class

print(data['feature_names']) #check the input features

df1=pd.DataFrame(data['data'],columns=data['feature_names'])

scaling=StandardScaler()

scaling.fit(df1)

scaled_data=scaling.transform(df1)

principal=PCA(n_components=3) #set n_componets=3

principal.fit(scaled_data)

x=principal.transform(scaled_data)

print(x.shape)

plt.figure(figsize=(10,10))

plt.scatter(x[:,0],x[:,1],c=data['target'],cmap='plasma')

plt.xlabel('pc1')

plt.ylabel('pc2')

plt.show()

from mpl_toolkits.mplot3d import Axes3D

fig=plt.figure(figsize=(10,10))

axis=fig.add_subplot(111,projection='3d')

axis.scatter(x[:,0],x[:,1],x[:,2],c=data['target'],cmap='plasma')

axis.set_xlabel('pc1',fontsize=10)

axis.set_ylabel('pc2',fontsize=10)

axis.set_zlabel('pc3',fontsize=10)

plt.show()

OUTPUT:

Ashish Ashtekar 411

Practical 7 :To explore the given data and identify the patterns in it.

Ashish Ashtekar 411

Aim: 8.1) To evaluate binary classification model using confusion matrix along with precision and

recall.

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import confusion_matrix

Ashish Ashtekar 411

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score

#load dataset

X,y=load_breast_cancer(return_X_y=True)

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)

#Train model

tree=DecisionTreeClassifier(random_state=23)

tree.fit(X_train,y_train)

y_pred=tree.predict(X_test)

#compute the matrix

cm=confusion_matrix(y_test,y_pred)

#plot the matrix

sns.heatmap(cm,

 annot=True,

 fmt='g',

 xticklabels=['maligant','benign'],

 yticklabels=['maligant','benign'])

plt.ylabel("prediction")

plt.xlabel("actual")

plt.title("confusion matrix")

plt.show()

#finding presion and recall

accuracy=accuracy_score(y_test,y_pred)

print("accuracy:",accuracy)

precision=precision_score(y_test,y_pred)

print("presion:",precision)

recall=recall_score(y_test,y_pred)

print("recall:",recall)

f=f1_score(y_test,y_test)

print("f1:",f)

OUTPUT:

Aim:8.2) To evaluate multi-class classification model using confusion matrix along with

precision and recall.

Ashish Ashtekar 411

Aim:9(Use an appropriate dataset and create a supervised learning model, Analyse the model with

ROC-AUC.

#Use an appropriate dataset and create a supervised learning model, Analyse the model with

ROC-AUC.

import pandas as pd

import seaborn as sns

Ashish Ashtekar 411

import matplotlib.pyplot as plt

from sklearn.tree import DecisionTreeClassifier

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

from sklearn.metrics import (

 confusion_matrix, accuracy_score, precision_score,

 recall_score, f1_score, roc_curve, auc)

X, y = load_breast_cancer(return_X_y=True)

X_train, X_test, y_train, y_test = train_test_split(

 X, y, test_size=0.25, random_state=23, stratify=y

)

tree1 = DecisionTreeClassifier(random_state=23)

tree1.fit(X_train, y_train)

y_pred1 = tree1.predict(X_test)

y_proba1 = tree1.predict_proba(X_test)[:, 1]

print("=== Breast Cancer Dataset ===")

print("Accuracy :", accuracy_score(y_test, y_pred1))

print("Precision:", precision_score(y_test, y_pred1))

print("Recall :", recall_score(y_test, y_pred1))

print("F1-score :", f1_score(y_test, y_pred1))

cm1 = confusion_matrix(y_test, y_pred1)

sns.heatmap(cm1, annot=True, fmt="g",

 xticklabels=["malignant", "benign"],

 yticklabels=["malignant", "benign"])

plt.title("Confusion Matrix - Breast Cancer Dataset")

plt.show()

fpr1, tpr1, _ = roc_curve(y_test, y_proba1)

roc_auc1 = auc(fpr1, tpr1)

data = pd.DataFrame({

Ashish Ashtekar 411

 "education":

["bach","mast","diploma","mast","diploma","bach","mast","mast","diploma","mast","bach","mast",

"mast","mast","bach"],

 "job": [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0]

})

Encode categorical features

X2 = pd.get_dummies(data.drop("job", axis=1))

y2 = data["job"]

X2_train, X2_test, y2_train, y2_test = train_test_split(

 X2, y2, test_size=0.25, random_state=23, stratify=y2

)

tree2 = DecisionTreeClassifier(random_state=23)

tree2.fit(X2_train, y2_train)

y2_pred = tree2.predict(X2_test)

y2_proba = tree2.predict_proba(X2_test)[:, 1]

print("\n=== Unbalanced CSV Dataset ===")

print("Accuracy :", accuracy_score(y2_test, y2_pred))

print("Precision:", precision_score(y2_test, y2_pred))

print("Recall :", recall_score(y2_test, y2_pred))

print("F1-score :", f1_score(y2_test, y2_pred))

cm2 = confusion_matrix(y2_test, y2_pred)

sns.heatmap(cm2, annot=True, fmt="g")

plt.title("Confusion Matrix - Unbalanced CSV Dataset")

plt.show()

fpr2, tpr2, _ = roc_curve(y2_test, y2_proba)

Ashish Ashtekar 411

roc_auc2 = auc(fpr2, tpr2)

​

plt.figure(figsize=(7, 5))

plt.plot(fpr1, tpr1, label=f"Breast Cancer (AUC={roc_auc1:.2f})")

plt.plot(fpr2, tpr2, label=f"Unbalanced CSV (AUC={roc_auc2:.2f})")

plt.plot([0, 1], [0, 1], "r--", label="Random Guess")

plt.xlabel("False Positive Rate")

plt.ylabel("True Positive Rate")

plt.title("ROC Curves Comparison")

plt.legend()

plt.grid(True)

plt.show()

OUTPUT:

Ashish Ashtekar 411

Ashish Ashtekar 411

Practical 10.:Consider a case study problem and implement an appropriate model and

evaluate it.

Ashish Ashtekar 411

Aim: 11.1)Bagging and boosting model.

#bagging and boosting

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier

from sklearn.metrics import classification_report

import pandas as pd

data = pd.read_csv("/content/breast-cancer.csv")

x=data.drop("diagnosis", axis=1)

y=data.diagnosis

df=pd.DataFrame(y)

print(df.head())

#splitting data

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=42)

#initialize model

rf=RandomForestClassifier(n_estimators=100,random_state=42)

gb=GradientBoostingClassifier(n_estimators=100,learning_rate=0.3,random_state=42)

#train model

rf.fit(x_train,y_train)

gb.fit(x_train,y_train)

#predict model

y_pred_rf=rf.predict(x_test)

y_pred_gb=gb.predict(x_test)

#Evaluate and print result

print("\nRandom forest (bagging) classification report: ")

print(classification_report(y_test,y_pred_rf))

print("\nGradient boosting (boosting) classification report: ")

print(classification_report(y_test,y_pred_gb))

Ashish Ashtekar 411

OUTPUT:

Ashish Ashtekar 411

Aim:11.2 Cross validation methods

from sklearn.datasets import load_breast_cancer

from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier

from sklearn.model_selection import cross_val_score, StratifiedKFold

import numpy as np

data = load_breast_cancer()

X = data.data

y = data.target

kf = StratifiedKFold(n_splits=10)

rf = RandomForestClassifier(n_estimators=100, n_jobs=42)

gb = GradientBoostingClassifier(n_estimators=100,learning_rate=0.1,random_state=42)

rf_scores = cross_val_score(rf,X,y,cv=kf,scoring='f1')

gb_scores = cross_val_score(gb,X,y,cv=kf,scoring='f1')

print(f"Random forest (Bagging) 10-fold cv f1-score:"

f"Mean={rf_scores.mean():.4f}:,Std={rf_scores.std():.4f}")

print(f"Gradient boosting (Boosting) 10-fold cv f1-score:"

f"Mean={gb_scores.mean():.4f}:,Std={gb_scores.std():.4f}")

OUTPUT:

Ashish Ashtekar 411

